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Abstract

Motivated by the need to make frequent changes in operating suites, this paper presents a
highly scalable and efficient solution framework for scheduling nurses in operating suites over the
day. This framework consists of two core optimization models that are necessary for scheduling
OR nurses in the clinic. The first model addresses the multi-objective optimization problem of
assigning nurses to upcoming surgery cases based on their specialties and competency levels. The
second model is designed to generate lunch break assignments for the nurses once their caseloads
are determined. The latter problem has been largely overlooked by the research community
despite its importance. Because the multi-objective model is too large to solve using commercial
software, we developed both a column generation algorithm and a two-phase swapping heuristic
to find feasible assignments in a fast manner. For both approaches, initial solutions are obtained
with a restricted model and lunch breaks are scheduled in a post-processing step. Experiments
were conducted to determine the value of the models and the performance of the algorithms
using real data provided by MD Anderson Cancer Center in Houston, Texas. The results show
that the two approaches can produce implementable daily schedules in a matter of minutes for
instances with over 100 nurses, 50 surgery cases and 33 operating rooms.

Key words: nurse scheduling; lunch breaks; multi-objective programming; column generation;
improvement heuristics

1 Introduction

The ability of healthcare systems to deliver high-quality, cost-effective care to an aging population
is under assault by a worldwide shortage of nurses [29]. As the population ages, the demand for
surgery has grown. Not having enough skilled nurses in clinical settings can have a significant
negative impact on nurse retention rates, patient safety and healthcare outcomes [5, 6, 11]. Given
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the current situation, hospital managers are in dire need to maximize the utilization and retention
of their nursing staff without jeopardizing job satisfaction.

Assigning each available nurse to the right place at the right time to do the right job is a major
concern for healthcare organizations. Such organizations are typically divided into specialized units
that house numerous job positions, each requiring a specific set of skills. This leads to a large number
of possible work schedules when coupled with demand and case variability. To determine “optimal”
schedules, one must consider nurse availability by skill level, their shift preferences, patient demand
classifications and uncertainty (e.g., demand, case durations, and resource capacity). Additional
considerations include regulatory and union requirements, working contract options, overtime, and
break times during a shift, to name a few. Moreover, each unit in the hospital may have a host of
individual rules and policies that play a role in staffing decisions.

Motivated by this need as well as the desire to avoid a heavy computational burden when
generating solutions, the purpose of this paper is to present a series of models to support the
timely construction of daily schedules for the nursing staff at surgery-centered hospitals. The work
was done in consultation with MD Anderson Cancer Center in Houston, Texas, one of the largest
cancer treatment facilities in the U.S. The primary model produces a daily roster that specifies
the assignment of nurses to shifts in accordance with their skills and planned cases. A second
model is used to adjust the corresponding schedules to allow for lunch breaks without disrupting
the surgeries underway. As in most realistic situations, there are multiple objectives that must be
weighed in the rostering process. The most prominent include the minimization of overtime and
idle time, the minimization of changes in assignments during the day to accommodate breaks, and
the maximization of case demand satisfaction in light of nurse competency levels and specialties.
Solutions are constrained by shift options, contract details, and nurse availabilities. In particular,
nurses are assigned to cases based on how closely their specialty and procedure competency match
the nature of the case and the procedure requirements.

In previous work [22], we developed a solution pool method (SPM) and a modified goal pro-
gramming method (MGPM) to produce daily schedules. However, we found both methods com-
putationally challenging as they required the solution of large-scale MIPs at intermediate steps.
Knowing that staff availability can change at any time during the day, the main contribution of
our work centers on the computational efficiency of the proposed methodology. We developed two
independent algorithms, both starting with the same feasible schedule derived from a third model,
which is a restricted version of the original model. The first algorithm is based on column genera-
tion, and the second is a two-phase swapping heuristic that iteratively works towards reducing staff
shortages, overtime and idle time. Updated schedules can be obtained in less than a few minutes
as case lengths and staffing needs change over the day. After a solution is obtained, our lunch
break model is called to ensure that lunch breaks are provided to all eligible nurses. The modeling
of this problem has been largely overlooked by the research community and represents the second
contribution of the paper.

The remainder of the paper is organized as follows. In Section 2, we review the most recent
research on nurse scheduling. Section 3 introduces our optimization models for assigning nurses to
different surgery cases and assuring that each nurse is given a lunch break when required. The two
solution algorithms are discussed in Section 4 and partially illustrated with examples. Numerical
results are presented in Section 5 for six data sets obtained from MD Anderson. Conclusions are
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drawn in Section 6.

2 Literature Review

Given the benefits that can be achieved with more efficient use of staffing resources, there has
been a great deal of work directed at solving general shift and tour scheduling problems (e.g., see
[15]). With respect to nurse scheduling and rostering problems, researchers have published surveys
that cover the period from 1965 to 2004 [7, 10]. Since that time, dozens of additional studies
have appeared in the literature presenting new models and solution methodologies for tackling a
variety of related problems. Much of this work has centered on integer programming-based methods
with the objective of either minimizing cost or maximizing nurse preferences. Planning horizons
considered can be as short as a shift or as long as a year [1, 3, 8, 26].

In contrast to the short-term problem addressed in this paper, most of the work on nurse
scheduling has focused on monthly (mid-term) scheduling. Some relevant papers can be found in
[20, 23, 26]. One of the few studies that considered daily scheduling was undertaken in [2], where
the authors developed a reactive planning model for dealing with staff shortages for the 24 hours.
Taking a hospital-wide view, the model was aimed at minimizing the costs of covering all shifts
for the current day by considering the use of overtime, agency nurses, pools, and canceling days
off. Solutions were found with a branch and price algorithm in conjunction with mixed-integer
rounding cuts to tighten up the relaxed feasible region of the master problem.

As mentioned in Section 1, due to specific nurse restrictions and the complexity of surgery
procedures, scheduling nurses in operating suites should be considered separately from scheduling
nurses in other areas. The surgery scheduling process of elective cases can be classified into four
planning phases [9]. First, one determines how much operating room time is assigned to the different
surgeons or surgical groups. This phase is often referred to as case mix planning and is viewed as a
strategic consideration. The second phase, which is tactically oriented, concerns the development
of a master surgery schedule, i.e., defining the number and type of operating rooms available, the
hours that rooms will be open, and the surgeons or surgical groups to whom the operating room
time is assigned. In the third phase, individual patients or cases are scheduled on a daily base.
In the fourth phase, the surgery schedule is monitored online and rescheduling is considered when
the current schedule is disrupted due to uncertainties. The nurse scheduling problem is present in
the first three phases on strategic, tactical and operational levels. This paper deals with the nurse
scheduling problem on an operational level, i.e., daily assignment of nurses to surgery cases.

Beliën and Demeulemeester [4] tackled an integrated nurse and surgery scheduling problem using
integer programming. They enumerated all possible ways of assigning operating blocks to different
surgeons subject to individual preferences, surgery demand and capacity restrictions. Solutions were
found with a column generation algorithm. To generate columns, they implemented two types of
pricing algorithms: the first generates a new roster line using a dynamic programming recursion and
the second generates a new surgery schedule using a mixed-integer programming (MIP) scheme.
Van Huele and Vanhoucke [31] combined three types of constructive heuristics with two priority
rule classes to solve an integrated physician and surgery scheduling problem. They proposed a goal
programming model for the problem when open scheduling strategy is used. The objectives were to
balance the physicians'workload while satisfying their preferences subject to constraints on breaks
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between shifts, skill levels, and on-call nurses. Xiang et al. [35] investigated an integrated daily
surgery and nurse scheduling problem using a mixed-integer nonlinear programming model. The
model considered a variety of nurse constraints such as role, specialty, qualification and availability.
To find solutions, they developed a modified ant colony optimization (ACO) algorithm with a
two-level ant graph.

The above mentioned papers have mainly focused on the surgery scheduling problem while in-
corporating nurse scheduling constraints into the model. Wong et al. [33] studied a nurse scheduling
problem for an emergency department in which seniority, qualifications, preferences, and legal reg-
ulations were taken into account. As is the norm, each case required a proper mix of manpower
with different skill sets and proficiency levels. A two-stage approach combining a shift assignment
heuristic and sequential local search was developed to find feasible solutions with the objective of
minimizing the violations of soft constraints. Mobasher et al. [22] proposed a multi-objective MIP
model for the daily scheduling of nurses in operating suites. The overall goal was to assign the
nurses to surgery cases based on their specialties and competency levels, subject to a series of hard
and soft constraints related to nurse satisfaction, idle time, overtime, and role changes during a
shift. They developed a solution pool method as well as a modified goal programming approach to
find solutions.

Uncertainty is an inherent characteristic of patient care problems. Van den Bergh at al. [30]
proposed three main classes for the uncertainty in personnel scheduling problems: uncertainty of
demand, arrivals, and capacity. Uncertainty of process times (e.g., surgery durations) can also be
considered as another main class. In fact, provider time with the patient is a prevalent source of
uncertainty in planning and scheduling problems in healthcare. Gutjahr and Rauner [17] proposed
an ACO algorithm to solve a dynamic nurse scheduling problem for a group of 15 hospitals in
Vienna, Austria. They considered uncertainty of demand and arrivals, along with a variety of con-
straints related to working patterns, nurse qualifications and preferences, management preferences,
and the cost of resources. They simulated the working environment over a four-week period to
compare the performance of the proposed ACO with a simulated annealing (SA) algorithm. Also,
several authors have used stochastic programming methods to solve nurse staffing and scheduling
problems characterized by demand uncertainty [18, 25, 27].

Scheduling breaks to help staff maintain their concentration while working is a common concern
in many areas such as air traffic control, security checking, assembly lines, and healthcare delivery.
Despite its critical importance, especially pertaining to breaks for nurses, break scheduling in
healthcare has been largely ignored by the research community. In contrast, there has been a
moderate amount of work in break scheduling for supervisory personnel. Widl and Musliu [32] in
their work, for example, considered several personnel-related constraints, such as legal requirements
and ergonomic limitations, and developed two variations of a memetic algorithm with genetic
operators to find solutions.

Although a vast amount of literature exists on nurse scheduling and operating room scheduling,
the combined problem has not been well addressed. The absence of an integrated approach ignores
the critical influence that nurses have on operating room efficiency and patient outcomes. To the
best of our knowledge, no models exist that consider the assignment of nurses to surgery cases
taking into account the lunch break requirement. In the next section, we present both a nurse
assignment model and a lunch break model to fill this void.
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3 Nurse Scheduling Problem in an Operating Suite

A number of individual and systemic factors must be taken into account when assigning nurses
to an operating suite. As in most healthcare settings, unless the interaction among all procedural
and personal factors are considered, the resultant schedules may not be practical or make the most
efficient use of the staffing resources. For our problem, the major factors include case specialties,
procedure complexities, nurse skill levels, and lunch breaks. Each is discussed below.

Surgery case. The building blocks of an OR schedule are the surgery cases, where each is defined
as a series of surgical procedures performed on one patient in one operating room in a day. Elective
cases are scheduled in advance while emergency cases occur on an as-needed basis. We define
surgery duration as the time required to finish a case starting with the arrival of the patient to
the operating room, performing the surgery, and finishing with the transfer of the patient to a
post-anesthesia care unit. We define surgery demand as the number of nurses required for each case
during each time period of the day in each role. The demand is a function of the case complexity
and the service performing the operation. Procedures can be classified as ‘simple,’ ‘moderate’ or
‘complex’.

Nurse categories. Nurses can be categorized in different ways based on their skill level, experi-
ence, education, knowledge, and certification. The most commonly recognized roles are circulator
and scrub [22]. Nurses are assigned to surgeries of different complexities based on their skill level
and experience. It is assumed that nurses who are qualified to work on harder procedures can also
work on easier ones.

Shift limitations. In all hospitals, the day is nominally divided into shifts that can span any-
where from 8 to 12 hours. Each shift has its own regulations such as break hours, overtime rules,
and on-call obligations. Operating suites generally have their own staffing and shift restrictions,
along with regulatory and union requirements that circumscribe nurse schedules. Moreover, nurses
cannot leave a surgery to take a break unless the case is finished or someone is available to relieve
them. These restrictions add another layer of difficulty when trying to generate implementable
schedules for nurses.

3.1 Nurse Assignment Model

In this paper, we assume that the decision maker has complete information on the number of
available nurses, their specialties and procedure competencies, their shift assignments, their role
abilities, surgery schedules, surgery durations, surgery specialties and procedural complexities,
break hours, and contract specifications. These parameters are defined as model inputs. Some
hospitals utilize computer tools to estimate surgery durations based on historical data as we did in
this paper [34], whereas others rely on surgeon's experience to generate time estimates.

At the hospital that served as a backdrop for our study, there is no single objective that guides
the process of generating schedules. Ideally, nurse assignments should minimize overtime and idle
time as well as meet surgery demand. In practice, though, it is not mandatory to satisfy all
demand and to finish all cases on time so in our model, violations of these goals are penalized.
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This has the effect of increasing the total cost of the schedule. The nurse assignment model (NAM)
presented below is designed to produce daily nurse schedules that match their skill levels with case
requirements.

3.1.1 Notation and assumptions

We assume that each working day can be divided into equal time intervals (e.g. 30-minute or 1
hour). All shifts include regular shift hours and authorized overtime. The latter are additional
hours that a nurse can be assigned to a surgery case when there is no other means of satisfying
the demand. This may occur when a case is not finished by the end of the regular shift and there
is no available nurse to relieve the working nurse, or when the demand for an in-progress case is
not satisfied. We also assume that in the operating suites being modeled, only circulators and
scrubs are required. These roles are typically filled by registered nurses (RNs) and scrub techs,
respectively, but RNs can perform both if necessary. Each nurse is limited to cases that match
his or her skill level and specialty. The competency level of a nurse must be at least as high as
the complexity level of the case that is assigned. Nurses with a higher competency can perform
surgery procedures with lower complexity but not vice versa; that is, nurse skill levels follow a
hierarchical pattern and are subject to downgrading [14]. Numerous articles in workforce planning
have considered the notion of hierarchical skills [13, 21].

In developing our NAM, we make use of the following notation.

Indices
I set of available nurses

J set of available ORs

K set of roles that are required for each surgery case (1: RN, 2: scrub tech)

Q set of specialties

C set of cases scheduled for surgery on the current day

S set of available shifts

P set of competency/complexity levels

H time intervals in a working day

Parameters
P 1
is 1 if nurse i ∈ I is working in shift s ∈ S, 0 otherwise

P 2
ikqp 1 if nurse i ∈ I can perform role k ∈ K for specialty q ∈ Q with competency level p ∈ P, 0 otherwise

P 3
cj 1 if case c ∈ C is scheduled for surgery in OR j ∈ J , 0 otherwise

P 4
cqph 1 if case c ∈ C requires specialty q ∈ Q and has procedural complexity p ∈ P in time interval h ∈ H,

0 otherwise

P 5
ckh required number of nurses for case c ∈ C who can perform role k ∈ K in time interval h ∈ H

P 6
ch 1 if case c ∈ C is in progress during time interval h ∈ H, 0 otherwise

P 7
c case c ∈ C duration (length of surgery)
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P 8
sh 1 if shift s ∈ S contains time interval h ∈ H as regular working hours, 0 otherwise
P 9
sh 1 if shift s ∈ S contains time interval h ∈ H as authorized overtime, 0 otherwise
M sufficiently large number

Decision variables Our aim is to determine which nurse should be assigned to which surgery
cases, during which time intervals, and which role they will perform. Accordingly, the decision
variables are defined as:
yickh 1 if nurse i ∈ I is assigned to case c ∈ C to perform role k ∈ K in time interval h ∈ H, 0 otherwise

xick 1 if nurse i ∈ I is assigned to case c ∈ C to perform role k ∈ K, 0 otherwise

3.1.2 Constraints

Our model contains both hard and soft constraints. Each set is applicable for all nurses.
Hard constraints cannot be violated under any circumstances. Examples include shift regulations
and nurse skill requirements.∑

c∈C

∑
k∈K

yickh ≤ 1, ∀i ∈ I, h ∈ H (1)

yickh ≤
∑
s∈S

(
P 1
is · (P 8

sh + P 9
sh)
)
, ∀i ∈ I, c ∈ C, k ∈ K, h ∈ H (2)∑

c∈C

∑
k∈K

∑
h∈H

yickh ≤
∑
s∈S

∑
h∈H

(
P 1
is · (P 8

sh + P 9
sh)
)
, ∀i ∈ I (3)

yickh ≤ P 6
ch ·

∑
q∈Q,

∑
p∈P

(
P 4
cqph · P 2

ikqp

)
, ∀i ∈ I, c ∈ C, k ∈ K, h ∈ H (4)

∑
i∈I

yickh ≥ P 6
ch, ∀c ∈ C, k ∈ K, h ∈ H (5)∑

h∈H

yickh ≤M · xick, ∀i ∈ I, c ∈ C, k ∈ K (6)∑
k∈K

xick ≤ 1, ∀i ∈ I, c ∈ C (7)

Constraints (1) ensure that each nurse is assigned to at most one case in each time interval and
performs a single role. Constraints (2) and (3) ensure that in each shift, cases will be assigned to
the nurses who are working during their regular or authorized overtime hours. In addition, the
total working hours for a nurse each day must be less than his or her total regular and overtime
working hours. Each nurse is allowed to work at most 4 hours overtime and 12 hours in total. Con-
straints (4) and (5) allow nurses to be assigned to a case only if their skill level is high enough to
handle the specialty requirements, and they have sufficient competency to deal with its procedural
complexities. Moreover, if case c is not in progress during time interval h, then no nurse will be
assigned to it. Nurses must perform the same role for the entire duration of a case rather than
rotating from one role to another. This is enforced with constraints (6) and (7).

Soft constraints are those that we would like to satisfy, but may not be able to without creating
an infeasible problem. To formulate the soft constraints, we define a deviation variable and an
auxillary variable for each. As indicated in the next subsection, the objective function is designed
to collectively minimize all deviations.
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deckh demand undercoverage during case c ∈ C for role k ∈ K in time interval h ∈ H , 0 otherwise

DE maximum staff shortage for any case c ∈ C and role k ∈ K, i.e., maxc,k{
∑
h deckh}

dev1
ih 1 if nurse i ∈ I is idle in time interval h ∈ H, 0 otherwise

DS maximum number of non-consecutive idle intervals for any nurse i ∈ I

dev2
ih 1 if nurse i ∈ I is assigned overtime in time interval h ∈ H, 0 otherwise

DF maximum amount of overtime assigned to any nurse i ∈ I

Xij 1 if nurse i ∈ I is assigned to room j ∈ J , 0 otherwise

X maximum number of room assignments for any nurse i ∈ I

ncic 1 if nurse i ∈ I is assigned to case c ∈ C , 0 otherwise

NCT maximum number of case assignments given to any nurse i ∈ I

cdic 1 if the assignment of nurse i ∈ I to case c ∈ C is broken, 0 otherwise. An assignment is broken if
the nurse is assigned to another case prior to the termination of the current case.

CDT maximum number of times an individual assignment to a case can be broken for any nurse i ∈ I

The soft constraints are formulated as follows:∑
i∈I

yickh + deckh ≥ P 5
ckh · P 6

ch, ∀c ∈ C, k ∈ K, h ∈ H (8)

DE ≥
∑
h∈H

deckh, ∀c ∈ C, k ∈ K (9)

− dev1
ih ≤

∑
c∈C

∑
k∈K

yick(h+1) −
∑
c∈C

∑
k∈K

yickh ≤ dev1
ih, ∀i ∈ I, h ∈ H (10)

DS ≥
∑
h∈H

dev1
ih, ∀i ∈ I (11)∑

c∈C

∑
k∈K

∑
h∈H

(
yickh · P 3

cj

)
≤M ·Xij , ∀i ∈ I, j ∈ J (12)∑

j∈J
Xij ≤ X , ∀i ∈ I (13)

∑
s∈S

P 1
is · P 9

sh ·
∑
c∈C

∑
k∈K

yickh ≤ dev2
ih, ∀i ∈ I, h ∈ H (14)

DF ≥
∑
h∈H

dev2
ih, ∀i ∈ I (15)∑

k∈K

∑
h∈H

yickh − P 7
c +M · cdic +M · (1− ncic) ≥ 0, ∀i ∈ I, c ∈ C (16)∑

k∈K

∑
h∈H

yickh ≤M · ncic, ∀i ∈ I, c ∈ C (17)∑
c∈C

ncic ≤ NCT , ∀i ∈ I (18)∑
c∈C

cdic ≤ CDT , ∀i ∈ I (19)

Although all demand should be met for each case in each time interval, this may not be pos-
sible due to a shortage of qualified nurses. In such circumstances, constraints (8) and (9) permit
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undercoverage. Moreover, it is preferred that nurses work continuously during their regular hours
rather than having idle periods. Constraints (10) and (11) avoid these idle periods. By minimizing
DS in the objective function, we assure that the maximum number of times that nurses work non-
consecutive hours will be minimized along with idle time hours during the shift. Constraints (12)
and (13) account for the preference that nurses work continuously in one operating room rather
than moving around. By minimizing X , we assure that the maximum number of ORs to which a
nurse is assigned is reduced as much as possible. Constraints (14) and (15) record overtime. By
minimizing DF , we assure that the maximum number of times a nurse is working during overtime
hours is as low as possible. Constraints (16)–(19) ensure that if a nurse is assigned to a surgery
case, (s)he will stay for the entire duration of the case unless there is a greater need for that nurse
elsewhere. Such a need may arise, for example, when limits on undercoverage or room assignments
cannot be maintained without reassigning the nurse to another case prior to the termination of his
or her current case. Also, by minimizing the maximum number of cases that a nurse can work,
NCT , we limit the movement of nurses between cases.

3.1.3 Objective function

As explained previously, soft constraints related to staff shortages, overtime, idle time, room
changes, number of assignments, and broken assignments may be violated. The objective of the
NAM is to minimize each violation (i.e., deviation) variable introduced in Section 3.1.2. In abbre-
viated terms, this can be written as

Minimize {DE ,DF ,DS,X ,NCT , CDT } (20)

Although trying to minimize a weighted sum of the violations in (20) is a common approach to
dealing with multi-objective problems (e.g., see [22]), solving the corresponding MIP with commer-
cial software proved to be too difficult. Instead, we developed an efficient algorithm that involved
generating an initial feasible solution and improving each violation with an iterative procedure.
The details are provided in Sections 4.1 and 4.2.

3.1.4 Strengthening the mixed-integer programming formulation

A common question when a big M is included in a constraint is what is the best value to use.
Although an arbitrarily large value will ensure feasibility of the constraint, it may slow down the
computations due to an unnecessarily large feasible region. To tighten the feasible region, we
set M in constraints (6), (16), and (17) to P 7

c

∑
q,p,h

(
P 4
cqph · P 2

ikqp

)
, P 7

c and P 7
c

∑
k,q,p,h

(
P 4
cqph · P 2

ikqp

)
respectively. For each case c ∈ C that can be assigned to a nurse i ∈ I, (s)he cannot work more than
the duration of case. The M in constraint (12) is also replaced by ∑

c,k,q,p,h

(
P 4
cqph · P 2

ikqp · P 3
cj · P 7

c

)
.

3.2 Nurse Lunch Model

This model is applicable for nurses who are working during the lunch hour interval and require a
break. A nurse is not allowed to leave the OR until the case on which she is working is finished
or another nurse with the appropriate skill and competency is available to relieve her. Ideally,
shift assignments and break assignments would be made together. However, this is not practical
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because NAM instances of realistic size are already too large to be solved exactly. Instead, we have
developed a nurse lunch model (NLM) that takes as input the solution of the NAM and adjusts it
to accommodate breaks.

3.2.1 Notation and assumptions

In general, nurses whose shifts start later in the day can first fill in for their colleagues who start
early in the morning, and then start their cases. In practice, there are usually enough nurses
starting the next shift to relieve all working nurses who need lunch break. Alternatively, nurses
who are assigned to short cases can fill in for those working long cases when a lunch break is due.
Those nurses who cannot be given a break during lunch period, will have their lunch break as soon
as the cases they are assigned to are finished and they become idle. When staffing is tight, some
nurses may not receive a break.

Indices
Î set of nurses who are working during the lunch period; Î ⊂ I

I ′ set of nurses who can provide an hour of relief during the lunch period; I ′ ⊂ I

H′ set of hours during which lunch should be taken; H′ ⊂ H

L lunch break periods; l ∈ L

Parameters Several of the parameters introduced in Section 3.1.1 for the NAM are used in this
model. In addition, we need to know who is assigned to which case during the lunch hours. This
information is obtained from yickh after solving the NAM.

Decision variables The following binary variables are used to determine which nurse relieves
nurse i and in which period l the break occurs.

ζii′l 1 if nurse i ∈ I is relieved by nurse i′ ∈ I ′ in lunch break period l ∈ L, 0 otherwise

3.2.2 Constraints

Nurse i can be relieved during lunch break period l only when an available nurse i′ with the same
specialty and competency level is available to fill in for her in the OR. Constraints (21) ensure that
this requirement is met for any substitution. Constraints (22) enforce the restriction that nurse i
can only be relieved by nurse i′ in one and only one of the lunch break periods. Finally, constraints
(23) limit nurse i′ to providing relief for at most one nurse during each of the lunch break periods.

ζii′l ≤

 ∑
q∈Q,p∈P

P 4
cqph · P 2

i′kqp

 · yickh, ∀l ∈ L, h ∈ H′, k ∈ K, i′ ∈ I ′, i ∈ Î, c ∈ C (21)

∑
i′∈I′

l∈L

ζii′l ≤ 1, ∀i ∈ Î (22)

∑
i∈Î

ζii′a ≤ 1, ∀i′ ∈ I ′, l ∈ L (23)
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3.2.3 Objective function

Our goal is to maximize the total number of nurses who can be given a break during the lunch
hours.

Maximize z′ =
∑

i∈Î,i′∈I′,l∈L

ζii′l (24)

4 Solution Algorithms

The nurse assignment model introduced in Section 3.1 is a multi-objective MIP. To find solutions,
it is necessary to decide how each objective function component is to be treated with respect
to the others. In previous work, Mobasher et al. [22] first optimized each term separately and
then minimized the weighted sum of the “deviation” from the optimal value of each. The weights
were derived using the analytic hierarchy process (AHP) with input obtained from interviews with
nurse managers. A comparison index was then used to compare the results provided by their
solution pool method (SPM) and modified goal programming method (MGPM). However, they
found both methods computationally challenging as they required the solution of large-scale MIPs
at intermediate steps. As an alternative, we have developed a column generation scheme (CGS)
and a two-phase heuristic (SWAP), which finds good schedules relative to SPM and MGPM and
strikes a balance between runtime and solution quality.

4.1 Column Generation Scheme

In this section, we describe our new approach to the NAM based on column generation. We begin
by creating an equivalent formulation of the NAM from a subset of the original constraints which
serves as the master problem. Each column in the master problem represents a feasible assignment
of nurses to a particular case over the planning horizon; that is, the specification of the yickh
variables for case c. We start with a small set of columns and generate more as needed. This is
done by solving one subproblem for each surgery case at each iteration of the algorithm.

The basic steps of our column generation scheme (CGS) are as follows. The master problem
is initialized with a solution to a simplified version of the NAM presented below. We then solve
its LP relaxation to get the dual prices for each constraint containing the yickh variables. Once
these values are available, we determine the reduced cost for each case c and solve the corresponding
subproblem. If the optimal objective function value is negative, then a new column is identified and
added to the master problem. By re-solving the master problem, new values for the dual variables
are found and the scheme is repeated. The process continues until either no negative reduced cost
is found or a stopping criterion (e.g. time limit, iterations) is reached. Nurse-related applications
of column generation are addressed in [4, 20, 26].

The specifics of our approach are now presented. Let Ω(c) be the set of columns available for
surgery case c and define the decision variables for the master problem as Zρc = 1 if column ρ is
chosen for surgery case c ∈ C ; 0 otherwise.

The master problem is created from constraints (1), (3), (10) – (15), (18) and (19). For each
case c, column ρ ∈ Ω(c) is constructed from the values of the y variables obtained from the solution
of subproblem c, such that yρickh = 1 if nurse i performs role k in hour h, and 0 otherwise. For
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presentation purposes, we use the NAM objective function given in Eq. (20). The linear master
problem (LMP) is as follows.

Minimize {DE ,DF ,DS,X ,NCT , CDT } (25)
subject to∑
c∈C,k∈K

∑
ρ∈Ω(c)

yρickh · Z
ρ
c ≤ 1, ∀i ∈ I, h ∈ H (26)

∑
c∈C,k∈K,h∈H

∑
ρ∈Ω(c)

yρickh · Z
ρ
c ≤

∑
s∈S,h∈H

P 1
is · (P 8

sh + P 9
sh), ∀i ∈ I (27)

∑
i∈I

∑
ρ∈Ω(c)

yρickh · Z
ρ
c + deckh ≥ P 5

ckh · P 6
ch, ∀c ∈ C, k ∈ K, h ∈ H (28)

∑
h∈H

deckh −DE ≤ 0, ∀c ∈ C, k ∈ K (29)

− dev1
ih ≤

∑
c∈C,k∈K

∑
ρ∈Ω(c)

yρick(h+1) · Z
ρ
c −

∑
c∈C,k∈K

∑
ρ∈Ω(c)

yρickh · Z
ρ
c ≤ dev1

ih,

∀i ∈ I, h ∈ H (30)∑
h∈H

dev1
ih −DS ≤ 0, ∀i ∈ I (31)∑

c∈C,k∈K,h∈H

∑
ρ∈Ω(c)

yρickh · Z
ρ
c · P 3

cj ≤
∑

c,k,q,p,h

(
P 4
cqph · P 2

ikqp · P 3
cj · P 7

c

)
·Xij , ∀i ∈ I, j ∈ J (32)

∑
j∈J

Xij −X ≤ 0, ∀i ∈ I (33)

dev2
ih −

∑
s∈S

P 1
is · P 9

sh ·
∑

c∈C,k∈K

∑
ρ∈Ω(c)

yρickh · Z
ρ
c ≥ 0, ∀i ∈ I, h ∈ H (34)

∑
h∈H

dev2
ih −DF ≤ 0, ∀i ∈ I (35)∑

c∈C

∑
ρ∈Ω(c)

ncρic −NCT ≤ 0, ∀i ∈ I, c ∈ C (36)

∑
c∈C

∑
ρ∈Ω(c)

cdρic − CDT ≤ 0, ∀i ∈ I, c ∈ C (37)

∑
ρ∈Ω(c)

Zρc ≤ 1, ∀c ∈ C (38)

DE ,DF ,DS,X ,NCT , CDT , deckh, dev1
ih, dev

2
ih, nc

ρ
ic, cd

ρ
ic ≥ 0

Xij ∈ [0, 1], Zρc ∈ [0, 1], ∀i ∈ I, j ∈ J , c ∈ C, k ∈ K, h ∈ H, ρ ∈ Ω(c) (39)

where all the values of yρickh, nc
ρ
ic and cd

ρ
ic are known.

In order to solve the LMP, the objective function in Eq. (25) must be linearized. Following the
approach in [22], we form the cumulative weighted index (CWI) by taking the weighted sum of
the deviation variables; that is,

CWI = w1DE + w2DF + w3DS + w4X + w5NCT + w6CDT (40)

The weights included in Equation (40) are calculated using the AHP. Table 2 in Section 5.2 shows
the pairwise comparisons of the six objectives and their relative weights wj , j = 1, ..., 6.
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To generate new columns, we first need to determine the reduced cost of variable Zρc ; call it
RC

ρ
c . This term serves as the objective function for subproblem c ∈ C. Also, The feasible region

of each subproblem consists of the remaining hard and soft constraints from the NAM that were
not included in the LMP. The procedure of calculating the reduced cost and the mathematical
formulation of the subproblem for case c are explained in Appendix A.

4.1.1 Initial solutions

Before we can begin solving the LMP, we need to provide an initial feasible solution. Experience
has shown that the quality of this solution can have a dramatic effect on the convergence speed of
heuristics [16, 24]. To derive good feasible solutions, we propose solving a simplified version of the
NAM.

Accordingly, we temporarily assume that the demand for nurses to perform role k ∈ K on case
c ∈ C is one. We also assume that the deviations mentioned in Section 3.1.2 are no longer permitted
so all soft constraints must be satisfied. As an example, the assignment of a nurse to a case can no
longer be broken while the surgery is in progress even if overtime is required.

The notation and parameters used in the formulation of the initial solution model (ISM) are
based on the NAM, and are as follows:
P 10
ick 1 if nurse i ∈ I can do role k ∈ K for case c ∈ C, 0 otherwise

STc starting time of case c ∈ C

ETc ending time of case c ∈ C

P 11
cc′ 1 if case c ∈ C and case c′ ∈ C overlap, 0 otherwise

The decision variables , xick, determine the nurse-to-case assignments as in the NAM.
Now, considering the above assumptions, we can formulate the ISM as follows.

Maximize
∑

i∈I,c∈C,k∈K

xick, (41)

subject to xick ≤ P 10
ick, ∀i ∈ I, c ∈ C, k ∈ K (42)∑

i∈I
xick = 1, ∀c ∈ C, k ∈ K (43)∑

k∈K

xick ≤ 1, ∀i ∈ I, c ∈ C (44)∑
c∈C,k∈K

xick ≤ η, ∀i ∈ I (45)

P 11
cc′ ·

(∑
k∈K

xick +
∑
k∈K

xic′k

)
≤ 1, ∀i ∈ I, c 6= c′ ∈ C (46)

xick ∈ {0, 1}, ∀i ∈ I, c ∈ C, k ∈ K (47)

The objective function (41) is aimed at maximizing the total number of nurses assigned to
surgery cases. Constraints (42) guarantee that a nurse will only be assigned to a case if the
qualifications are met to work on it (i.e., P 10

ick = 1). Constraints (43) and (44) ensure that exactly
one nurse is assigned to each case c to perform role k, and that no nurse can have more than one
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role on a case, respectively. Constraints (45) state that nurse i can be assigned to at most η cases
(i.e., a pre-specified number) for the day. The final restriction (46) prevents a nurse from being
assigned to more than one case at a time, and breaking an assignment in the middle of a surgery
has been ruled out by assumption.

Proposition 1. A feasible solution of the NAM can be constructed from an optimal solution of the
ISM.

Proof. See Appendix B.

Corollary 2. The optimal solution of the ISM provides an upper bound for the NAM.

Proof. According to Proposition 1, an optimal solution of the ISM is also a feasible solution to the
NAM. Because any feasible solution provides a primal bound on the objective function value, the
optimal solution of the ISM provides an upper bound for the NAM.

Corollary 3. The optimal solution of the ISM provides a feasible solution for the LMP.

Proof. After removing some of the hard constraints, the LMP becomes a relaxation of the NAM .
Therefore, any feasible solution to the NAM is also feasible to the LMP. From Proposition 1, we
conclude that the optimal solution of the ISM provides a feasible solution to the LMP.

The results obtained from solving the ISM can also be used to improve the quality of the
columns generated by the subproblems. Since the optimal solution of the ISM is an upper bound
of the NAM, we can use the staff shortages associated with the initial solution as an upper bound
for the staff shortages introduced in the LMP in Eqs. (28) and (29). Therefore, if we assume that
DEISc is the amount of staff shortage for surgery case c ∈ C based on the ISM optimal solution,
then DE ≤ DEISMc in the subproblem associated with surgery case c ∈ C. A pseudocode of the
column generation scheme is presented in Algorithm 1.

4.2 Swapping Heuristic (SWAP)

In this section, we present a swapping heuristic (SWAP) that is designed to provide good feasible
schedules in a few seconds. Swapping techniques are the mainstay of heuristics (e.g., tabu search,
bee colony algorithm, genetic algorithm) designed to solve scheduling problems [19, 28]. SWAP
is a two-phase procedure. In the first phase (Construction), the ISM in Section 4.1 is solved to
obtain an initial solution; in the second phase (Improvement), three exchange procedures are called
to try to improve the schedule by reducing the violation of soft constraints. They are executed
sequentially to reduce staff shortage, overtime, and idle time, respectively. Using construction
and improvement heuristics is a well documented approach for solving tightly constrained integer
programing problems [12, 33].

The improvement phase consists of three heuristics designed to reduce violations of soft con-
straints. However, these constraints are not of equal importance or priority from the point of view
of those responsible for staffing the ORs. Based on discussions with the nurse managers at MD An-
derson Cancer Center provided in Table 2, we determined that demand satisfaction, overtime and
idle time are the three most critical soft constraints, in that order. Accordingly, the improvement
phase consists of three successive groups of heuristics to reduce staff shortage, overtime, and idle
time.
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Algorithm 1 Column generation scheme for NAM
Step 1: Initialization
• Solve the ISM to obtain an initial solution to the NAM, and initialize the master problem.
• Add constraint DE ≤ DEISMck to the subproblems.
• Let n = number of solutions obtained from each subproblem using the solution pool feature; set t = 0.
while t ≤ K do
Step 2: Dual variable generation
• Solve the LP-relaxation of the master problem optimally, and obtain dual variables associated with
the master problem constraints.
Step 3: New columns generation
for each surgery case c ∈ C do
• Obtain the reduced cost using Eq. (48)
if reduced cost < 0 then
• Obtain n alternate solutions from the subproblem to serve as new columns for case c. (Here, we
try to generate m feasible solutions such that m ≥ n, and then choose the n among them with the
lowest reduced costs.)
• If the column is not redundant, add it to the master problem.

end if
end for
• Put t← t+ 1;
• Go to Step 2.

end while
• Output CWI∗, DE∗, DF∗, DS∗, X ∗, NCT ∗,CDT ∗, y∗ickh, x∗ick, de∗ckh, dev1∗

ih , dev2∗
ih , X∗ij , nc∗ic, cd∗ic.

Reducing staff shortages The first stage in the improvement phase is minimizing staff short-
ages. The first step is to identify surgery cases with demand shortage (set SD) based on the initial
solution obtained from the ISM. The cases are then sorted in descending order of staff shortage.
The procedure for assigning idle nurses to cases in SD is based on the availability of nurses who can
perform the required role on the case (See the flowchart in Appendix D). Algorithm 2 and Figure 1
indicate how to find the best nurse to assign to a case with a shortage. In the worst case, the “for”
loop in Algorithm 2 has to be executed for all cases and nurses, so its complexity is O(mnlog(n)),
with m being the number of cases, and n being the number of nurses.

If there are no idle nurses who can work on the case under consideration for at least a portion
of its duration, two procedures are called. In each, an idle nurse is swapped with a nurse who can
work on the case but who is already assigned to another case. Figure 2 illustrates the logic. The
procedure also runs in O(mnlog(n)) time.

Reducing Overtime. Starting from the updated solution from the staff shortage reduction stage,
we now try to reduce the overtime assignments. The process is illustrated in the flowchart in
Appendix D. The first step is to find the nurses who work overtime (set OD) and sort them in
descending order based on their total overtime. For each nurse i in OD, we search for another
nurse i′ who is idle during his/her regular working hours, and the corresponding overtime hours
of i. If such a nurse i′ is found and can work on the case, we relieve the overtime nurse from his
assignment and assign the available nurse to that case. This exchange procedure has O(n2log(n))
complexity in the worst case, where n is the number of nurses.
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Algorithm 2 Reducing staff shortages
Objective: Assign available nurses to case c ∈ SD for all or part of its remaining duration
for each surgery case c ∈ SD do
• Define set ID as the set of nurses who can work on case c from time STic to time ETic.
for each nurse i ∈ I do
• Check if nurse i has not been assigned to any cases throughout the day.
• If nurse i can do role k on case c for duration DB = ETic − STic + 1, add nurse i to set ID.

end for
• Sort ID based on DB in descending order.
if set ID is empty then
• Break.

else
• Assign the first nurse i ∈ ID to case c from time STic to time ETic.

end if
• Update set ID.
• Update staff shortage for case c ∈ SD.

end for

Figure 1: The procedure for assigning idle nurses to cases in SD is based on the availability of nurses who
can perform the required role on the case. The horizontal bar next to each nurse depict the amount of time
(s)he can work on case c ∈ C. (a) Nurses i, j, k ∈ I are idle nurses who can work on case c ∈ C, (b) The
nurse with the greatest available time to work on the case is selected.

Reducing Idle Time To reduce idle time as well as to improve the efficiency and experience
of the nursing staff, it is desirable to assign nurses who are idle to surgery cases with the highest
complexity levels that match their competency level. In some situations, it is also desirable to assign
nurses to cases outside of, but related to, their specialty in order for them to gain experience in
other specialties. Nurses in this category are called learning fellows. Cases with demand shortages
are given a higher priority in this process. The process is illustrated in the flowchart in Appendix
D. The procedure has O(mnlog(n)) complexity in the worst case, with m being the number of cases
and n the number of nurses.
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Figure 2: (a) The indices i1, i2,...,in ∈ I present idle nurses who cannot work on case c, while i′ can work
on case c but is already assigned to other cases; (b) i′ is relieved from his assignments by i1, i2, ..., in and
assigned to work on case c. Nurses do not need to be available for the entire duration of the case in order to
be swapped to the case, but preference is given to nurses who are available for the entire duration.

5 Computational Experience

The case study presented in this section is based on data gathered from the University of Texas
MD Anderson Cancer Center, Houston, TX. The preoperative enterprise at MD Anderson handles
an estimated 1500 surgeries per month. There are 148 nurses and 140 surgeons on the staff who
perform these surgeries. Scheduling nurses based on their abilities and shift preferences is a complex
task that has always been done manually in the main operating suite.

5.1 Test Problems Setup

Data were collected on nurse attributes and daily surgery schedules in the main operating suite,
which comprises 33 operating rooms. Most of the ORs are multi-functional and run five days a
week with each day being scheduled separately. We assume that surgery durations are deterministic
and known based on the surgeons’ estimates. On average, 100 nurses (RNs and scrub techs) are
available for the different shifts every day. Shifts are 8, 10 and 12 hours in length. The combina-
tion of regular shift hours and authorized overtime hours cannot exceed 12 hours for each nurse.
Nurses are categorized in 11 different specialties, (e.g., head and neck, plastic, oncology) and three
competency levels (simple, moderate, and complex) based on their experience and certifications.
Nurses are assigned to work on different cases based on the surgery sheet provided by the scheduling
department. These sheets contain information on the surgeries scheduled for that day, the surgeon
assigned to each case, his or her instrument preferences, the operating room, the estimated duration
and procedural complexity, as well as the surgery demand. A 30-minute time interval (h = 30 min)
is used for developing a schedule.

We generated six data sets based on actual data from MD Anderson. Table 1 shows the
characteristics of each set. The optimization models were implemented in a C++ environment and
solved using CPLEX 12.2 on a 3GHz workstation with 16GB memory running RedHat Server 2008.
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Table 1: Data sets for different operating suites

Data No. of No. of No. of No. of No. of
set no. RNs scrub techs surgery cases (|C|) shifts (|S|) ORs (|J |)

1 4 2 3 1 2
2 19 6 14 2 10
3 28 9 28 5 17
4 39 11 28 5 17
5 44 38 40 6 26
6 56 56 53 6 33

5.2 Results for the Nurse Assignment Model

For the sake of brevity, we only report the results for data sets 1, 2 and 6 as shown in Tables 3, 4
and 5, respectively. The results for data sets 3, 4 and 5 are reported in Appendix C. In these tables,
performance of the Nurse Assignment Model (NAM), Solution Pool Method (SPM), Modified Goal
Programming Method (MGPM), Column Generation Scheme (CGS), Initial Solution Model (ISM)
and the swapping heuristic (SWAP) in generating nurse schedules are evaluated and compared.

For the NAM, we used objective function z = DE + DF + DS + X + NCT + CDT ; for the
remaining models, we determined the weights for CWI in Eq. (40) with the AHP based on the
actual opinions of nurse managers at MD Anderson. Table 2 presents the pairwise comparisons
used to compute the six weights, wj , j = 1, ..., 6.

Table 2: Pairwise comparisons of objectives and their relative importance weights for NAM

j (1) (2) (3) (4) (5) (6) wj

(1) DE 1 3 7 5 9 9 0.53
(2) DF 1/3 1 7/3 5/3 3 3 0.18
(3) DS 1/7 3/7 1 5/7 9/7 9/7 0.08
(4) X 1/5 3/5 7/5 1 9/5 9/5 0.11
(5) NCT 1/9 1/3 7/9 5/9 1 1 0.06
(6) CDT 1/9 1/3 7/9 5/9 1 1 0.06

Table 3: Numerical results for data set 1

Solution Staff Overtime Idle times Time CWI
method shortage (DE) assignments (DF) (DS) (sec)
NAM 0 1 8 14.21 1.22
SPM 0 1 10 4 1.21

MGPM 0 1 8 1 1.05
CGS 0 1 8 0.54 1.05
ISM 0 1 10 0.03 1.21

SWAP 0 1 7 0.03 0.97

From Table 3 we see that all algorithms provide solutions that satisfy the surgery demand (i.e.,
DE = 0) and perform almost equally well in minimizing all deviations. However, NAM, SPM and
MGPM require more computation time compared to CGS and SWAP, which converge in less than
a second. Looking deeper into the results, SWAP provides the least number of idle intervals (DS),
and the smallest CWI value, 0.97. On balance, SWAP can be considered as the best solution
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Table 4: Numerical results for data set 2

Solution Staff Overtime Idle times Time CWI
method shortage (DE) assignments (DF) (DS) (sec)
NAM 14 5 23 18000 10.85
SPM 22 5 15 18364 14.22

MGPM 22 5 16 1674 14.07
CGS 22 7 18 4.52 14.7
ISM 22 7 19 0.1 14.78

SWAP 22 1 18 0.29 13.85

Table 5: Numerical results for data set 6

Solution Staff Overtime Idle times Time CWI
method shortage (DE) assignments (DF) (DS) (sec)
Actual 22 7 16 N/A 14.6
NAM 22 6 19 54080 17.26
SPM 2 5 17 54076 6.2

MGPM 9 1 19 39800 7.51
CGS 22 7 22 65.84 15.19
ISM 22 7 22 1.24 15.19

SWAP 14 4 13 3.6 9.75

method for data set 1.
For data set 2, the NAM provides less staff shortage in comparison with the other methods

but required five hours of runtime. SPM also required excess runtime while yielding an inferior
solution compared to the NAM and so can be ruled out from further consideration. MGPM and
CGS perform equally but CGS is dominant with respect to runtime by a factor of 40. SWAP
provides the least overtime (DF) among all methods by a factor between 5 and 7, and less idle
time in comparison with NAM that has the smallest CWI value. The main advantage of SWAP
is its computational efficiency. In comparison to CGS that found its best solution in 5 sec, SWAP
needed less than 10% of that time to obtain an even better solution.

Data set 6 represents an actual nurse scheduling problem at MD Anderson. The second row in
Table 5 reports the corresponding results. From the table we see that the NAM is dominated in
every measure, with respect to the actual results, and the results provided by all its competitors.
SPM does the best in meeting demand and MGPM yields the least amount of overtime. However,
extremely large solution times make these methods impractical. Solving the problem using SPM
and MGPM takes 15 and 11 hours, respectively. CGS can solve the problem in one minute which
is reasonable for practical instances.

SWAP overcomes the computational disadvantages of SPM and MGPM, while providing better
solutions than CGS. It reduces the demand shortage in the actual schedule by 36% and obtains
a solution with maximum staff utilization (i.e., minimum idle times). It also solves the problem
in only 3.6 seconds which is less than 0.01% of the runtimes for SPM and MGPM, and 6% of the
required time for CGS.

Table 6 highlights performance of the column generation algorithm, which was seen to be
computationally efficient and able to provide good feasible solutions. The third column indicates
that very few iterations were needed to converge at the root node of the implied search tree. At
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that point, the LMP was solved as an IP with Zρc ∈ {0, 1} to arrive at a feasible solution. An
advantage of the column generation algorithm as compared to the SWAP is that the quality of the
obtained results by this algorithm can be measured by checking the optimality gap between the
LMP solution and the integer solution.

Table 6: Column generation results

Data set Gap?(%) CG Iterations CG time (sec) IP time (sec)
1 14.00 3 0.53 0.01
2 11.86 2 4.48 0.04
3 15.27 2 11.28 0.03
4 15.27 2 28.10 0.04
5 16.52 2 35.53 0.12
6 14.63 2 65.74 0.10

? 100 × (obj(IP ) − obj(LMP ))/obj(IP )

For large data sets, we found that the NAM was not able to find a feasible solution, and SPM
was the worst approach with respect to computational efficiency. MGPM ran more quickly and
produced a smaller CWI than did NAM and SPM for all data sets. However, none of these methods
were seen to be computationally efficient, especially for large instances. When it is desirable or
necessary to explore different scenarios or deal with nurse shortages, one of the faster methods
would be preferred. Operationally speaking, one must be able to obtain a good feasible solution in
a matter of minutes.

The column generation approach was developed to accommodate this situation. It solved quickly
for all data sets. Embedding it in a branch-and-price scheme, or at least allowing for some branching
might notably improve its results and reduce the optimality gap. For large data sets, if we need
to re-solve the scheduling problem to reflect any last minute cancellations or call-ins, we will need
a faster approach. As the results show, SWAP can improve the initial solutions in seconds and
provides good solutions at convergence across all criteria.

5.3 Results for the Nurse Lunch Model

For the early shift, three 1-hour lunch break intervals are available starting from 10:30 AM and
going to 1:30 PM. Nurses whose shift starts at 10:30 AM typically begin by relieving nurses who
started their shift at 6:30 AM, work in the relief role until 1:30 PM, and then spend the remainder
of the day on other cases. We used the same data sets introduced in Section 5.2 for evaluating our
lunch model. Given the nurse assignments, we can easily solve the NLM in seconds for each data
set. For illustrative purposes, only the results for data set 6 (i.e., the actual scheduling problem)
are presented in Table 7. This was the most computationally challenging instance. Recall that our
objective in making the lunch break assignments is to maximize the total number of nurses who
can be relieved during the lunch break periods between 10:30 AM and 1:30 PM. In all, there are
70 nurses who start at 6:30 AM and 42 relief nurses who start at 10:30 AM.

Table 7 shows that the nurse lunch model in conjunction with one of the solution algorithms can
provide a complete set of schedules that efficiently meets case demand and lunch break requirements.
For those nurses working the second shift and who need to be relieved during their lunch break
interval, the NLM can be run again but with the nurses working the third shift filling in for those
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on the second shift.

6 Summary and Conclusions

Knowing that nurse availability can change in real time, we have developed a fast solution framework
for the daily nurse scheduling problem in operating suites. A unique feature of our methodology is
that it provides both a surgery and lunch break schedule for the nursing staff. The daily assignments
are designed to satisfy a range of requirements related to case specialty, procedure complexities,
and skill levels. The problem is formulated as a mixed integer program with the objective of
minimizing demand shortage, overtime and idle time. Two new heuristics were developed to solve
the problem: a column generation scheme and a two-phase heuristic. Using six instances derived
from data provided by the University of Texas MD Anderson Cancer Center in Houston, we observed
that both CGS and SWAP can solve the NAM and NLM in a couple of minutes, which is the
main contribution of this paper. Compared to our previous heuristics including the solution pool
approach and a goal programming model, the results showed reductions in solution times of up to
99%, especially, for the large instances.

SWAP seems to be the best alternative if one wishes to have a higher quality of the schedule,
and needs a scheduling tool to make frequent changes to the nurse assignments. Considering
stochastic durations for surgical procedures and studying their effect on nurse assignments would
be an interesting topic for future research.

Table 7: Daily lunch assignments provided by the NLM based on data set 6 using SWAP
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Appendix A. Calculating the Reduced Cost RCc

In general, the reduced cost of Zρc can be written as cρc−πyρc , where cρc is the corresponding objective
function coefficient, π is a vector of dual variables and yρc is the column vector whose components
are yρickh for all i, k and h. The relevant values of π are given in Table 8. The reduced cost of Zρc
is given in Equation (48).

Table 8: Master problem dual variables

Constraint Dual variable Index range
(26) π1

ih ≥ 0 ∀i ∈ I, h ∈ H
(27) π2

i ≥ 0 ∀i ∈ I
(28) π3

ckh ≥ 0 ∀c ∈ C, k ∈ K, h ∈ H
(30) π4

ih and π5
ih ≥ 0 ∀i ∈ I, h ∈ H

(32) π6
ij ≥ 0 ∀i ∈ I, j ∈ J

(34) π7
ih ≥ 0 ∀i ∈ I, h ∈ H

(36) π8
ic ≥ 0 ∀i ∈ I, c ∈ C

(37) π9
ic ≥ 0 ∀i ∈ I, c ∈ C

(38) π10
c ≥ 0 ∀c ∈ C

RC
ρ
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(48)

The feasible region of each subproblem consists of the remaining hard and soft constraints from
the NAM that were not included in the LMP. So, The subproblem for case c is

Minimize RCc (49)

subject to yickh ≤
∑
s∈S

P 1
is · (P 8

sh + P 9
sh), ∀i ∈ I, k ∈ K, h ∈ H (50)

yickh ≤ P 6
ch ·

 ∑
q∈Q,p∈P

P 2
ikqp · P 4

cqph

 , ∀i ∈ I, k ∈ K, h ∈ H (51)

∑
i∈I

yickh ≥ P 6
ch, ∀k ∈ K, h ∈ H (52)∑

h∈H

yickh ≤ P 7
c ·

∑
q∈Q,p∈P,h∈H

(
P 4
cqph · P 2

ikqp

)
· xick, ∀i ∈ I, k ∈ K (53)
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∑
k∈K

xick ≤ 1, ∀i ∈ I (54)∑
k∈K,h∈H

yickh + P 7
c · (cdic + (1− ncic)) ≥ P 7

c , ∀i ∈ I (55)

∑
k∈K,h∈H

yickh ≤ P 7
c ·

∑
k∈K,q∈Q,p∈P,h∈H

(
P 4
cqph · P 2

ikqp

)
· ncic, ∀i ∈ I (56)

xick, yickh, ncic ∈ {0, 1}, ∀i ∈ I, c ∈ C, k ∈ K, h ∈ H (57)

Appendix B. Proof of Proposition 1

A feasible solution of the NAM can be constructed from an optimal solution of the ISM.

Proof. We take two steps to prove this claim. The first step is to show that any feasible solution
of the ISM satisfies the hard constraints in the NAM. We then show that (x̄, ȳ) can be constructed
based on x̂.

Let us examine the constraints of both models. In terms of the feasibility condition, constraint
(46) is equivalent to constraint (1), constraint (42) is equivalent to constraints (2) and (4), constraint
(45) is equivalent to constraints (3) (both constraints limit the workload of each nurse during the
day), constraint (43) is equivalent to constraint (5), and constraint (44) is equivalent to constraints
(6) and (7). Thus, we can see that constraints of the ISM are equivalent to a special case of the
NAM in which each scheduled case must have one nurse per role and deviations are not allowed.

Suppose that the feasible region of the ISM is not empty. Let x̂ = {x̂ick}∀i∈I,c∈C,k∈K be a feasible
solution of the ISM and (x̄, ȳ) be a feasible solution of the NAM, where ȳ = {ȳickh}∀i∈I,c∈C,k∈K,h∈H.
In particular, it is easy to see that x̄ = x̂ according to variable definitions. Because all surgical cases
have already been scheduled prior to the nursing staff assignment, x̂ick dictates which time intervals
(h) will be assigned to nurse i for case c. Hence, ȳickh = 1 if x̂ick = 1 and STc ≤ h ≤ ETc for any
i ∈ I, c ∈ C, k ∈ K, h ∈ H; 0 otherwise. Because an optimal solution is also a feasible solution, a
feasible solution of the NAM can be constructed from an optimal solution of the ISM.

Appendix C. Obtained Results for Data sets 3, 4 and 5

Table 9: Numerical results for data sets 3, 4 and 5

Solution Staff Overtime Idle times Time CWI
method shortage (DE) assignments (DF) (DS) (sec)
NAM 0 5 10 42400 2.39
SPM 12 6 14 42367 8.96

MGPM 0 6 13 18654 2.52
CGS 12 6 14 11.31 9.07
ISM 12 6 14 0.23 9.07

SWAP 12 6 14 0.63 9.24
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Solution Staff Overtime Idle times Time CWI
method shortage (DE) assignments (DF) (DS) (sec)
NAM 12 4 18 37610 10.83
SPM 12 6 13 37606 8.88

MGPM 0 5 13 18502 2.57
CGS 12 6 17 28.14 9.30
ISM 12 6 17 0.25 9.31

SWAP 12 6 9 0.65 8.73

Solution Staff Overtime Idle times Time CWI
method shortage (DE) assignments (DF) (DS) (sec)
NAM 21 4 16 54080 16.01
SPM 22 4 20 54059 14.45

MGPM 4 0 15 34171 4.01
CGS 22 7 18 35.65 14.87
ISM 22 7 18 0.68 14.87

SWAP 22 5 15 2.33 14.41

7 Appendix D. SWAP Improvement Phase Flowcharts

(a) Flowchart of staff shortage reduction (b) Flowchart of staff shortage reduction
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(c) Flowchart of idle time reduction
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